360 research outputs found

    Experimental Study on an Electrical Deicing Technology Utilizing Carbon Fiber Tape

    Get PDF
    INE/AUTC 12.2

    Novel Pressure-Induced Structural Transformations of Inorganic Nanowires

    Get PDF

    Impact of Embedded Carbon Fiber Heating Panel on the Structural/Mechanical Performance of Roadway Pavement

    Get PDF
    INE/AUTC 12.3

    A Modified Vivaldi Antenna for Improved Angular-Dependent Fidelity Property

    Get PDF
    The analysis, design, and realization of a modified Vivaldi antenna optimized for time domain fidelity factor in the half-space located in the direction of the antenna main beam are presented. The proposed antenna shows improved angular-dependent fidelity property, with respect to the signal transmitted in the main beam direction. A substantial increase in the fidelity factor is achieved by utilizing spatial filter effect introduced by adding two dielectric slabs parallel to the antenna substrate. By choosing optimal dimensions and location of the slabs, the signal waveforms in the mentioned half-space are equalized so as to improve the quality of the radiated signal waveform in the main beam direction. As a result, the fidelity property in the half-space is improved greatly. The simulated and measured fidelity factor in the angular operational region is studied and compared with experimental measurements. The ranges with the fidelity factor better than the value of 0.9 are improved by 95% in H-plane and by 14% in E-plane, respectively

    Nonlinear dynamic analysis for high speed gear-rotor-bearing system of the large scale wind turbine

    Get PDF
    In this paper, an eight-degree-of-freedom (8-DOF) lumped parameter dynamic model considering the coupled lateral-torsional vibration is proposed and the coupled multi-body dynamics of the spur gear rotor bearing system is studied containing backlash, transmission error, eccentricity, gravity and time-variant mesh stiffness. Based on the dynamical equations, the coupled dynamic response of the system is investigated using the Runge-Kutta method and the effects of error fluctuation and load fluctuation on the dynamic responses are demonstrated by 3-D frequency spectrum bifurcation diagram, etc. The results show that a diverse range of nonlinear dynamic characteristics such as periodic, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. For gear system, the dynamic behaviors are analyzed in light, middle and high rotational speed conditions. With the increase rotational speed, the vibration amplitude increase markedly and the region of the chaotic motion become narrow gradually. At the low rotational speed, the chaos behavior turns out more easily, and the vibration intensity relatively weak. With the increase rotational speed, the vibration amplitude obvious increase, and the characteristics of the chaos strengthen and turns backward. This study may contribute to a further understanding about the spur gear bearing system with the coupled internal and external excitation

    Author's personal copy Pressure-induced morphology-dependent phase transformations of nanostructured tin dioxide

    Get PDF
    a b s t r a c t Two morphologies of nanostructured tin dioxide (SnO 2 ) (i.e., nanobelts and nanowires) were compressed in diamond anvil cells up to 38 GPa followed by decompression. In situ Raman spectroscopy and synchrotron X-ray diffraction were employed to monitor the structural transformations. It was found that nanostructured SnO 2 behaved drastically differently than bulk material in terms of transformation pressures, phase stability regions and compressibility. These findings provide new insight into the unique pressure behaviours of nanostructured materials and have profound implications for producing controlled structures with new applications achieved by combined pressure-morphology tuning

    Sea surface salinity observed from the HY-2A satellite

    Get PDF
    Motivated by the shortcomings of radio frequency interferences (RFI) associated with the spaceborne L-band radiometers near the Northwest Pacific and previous study near the Amazon plume, this study presents a sea surface salinity (SSS) retrieval algorithm from the microwave radiometer onboard the HY-2A satellite. The SSS signal is improved by differentiating the reflectance between the C and X band. A reflectance calibration method is proposed by using a combination of radiative transfer model (RTM) and the Klein-Swift emissivity model. Evaluations of the retrieved SSS from the HY-2A satellite indicate that the root mean square error (RMSE) is about 0.35 psu on 0.5 degree grid spacing and monthly time scale which is comparable to the accuracy of SMOS and Aquarius-SAC/D satellites

    Dynamic analysis of hook block for polar crane in nuclear power plant

    Get PDF
    A systematic method to analyze the trajectory of hook block for polar crane in nuclear power plant (NPP) is proposed, in which dynamic equations of the system and the compatibility conditions for drum parameters are presented. Properties and formulations of the variables involved in these equations are studied in detail. A method to describe the rope-pulley system is given and a numerical method is derived to solve the positions and velocities of the common tangents that consistent with the reeving ropes between spatial pulleys. Based on these displacements and velocities, the angular speeds of pulleys are given to solve the difficulty to confirm the rotating directions of pulleys in some rope-pulley systems. A numerical example contrasting the dynamic model with corresponding static model is demonstrated to validate the systematic method. The proposed method is largely universal and can be a reference for designing and analyzing of polar cranes in NPP

    Reinforcement learning-based multi-AUV adaptive trajectory planning for under-ice field estimation

    Get PDF
    This work studies online learning-based trajectory planning for multiple autonomous underwater vehicles (AUVs) to estimate a water parameter field of interest in the under-ice environment. A centralized system is considered, where several fixed access points on the ice layer are introduced as gateways for communications between the AUVs and a remote data fusion center. We model the water parameter field of interest as a Gaussian process with unknown hyper-parameters. The AUV trajectories for sampling are determined on an epoch-by-epoch basis. At the end of each epoch, the access points relay the observed field samples from all the AUVs to the fusion center, which computes the posterior distribution of the field based on the Gaussian process regression and estimates the field hyper-parameters. The optimal trajectories of all the AUVs in the next epoch are determined to maximize a long-term reward that is defined based on the field uncertainty reduction and the AUV mobility cost, subject to the kinematics constraint, the communication constraint and the sensing area constraint. We formulate the adaptive trajectory planning problem as a Markov decision process (MDP). A reinforcement learning-based online learning algorithm is designed to determine the optimal AUV trajectories in a constrained continuous space. Simulation results show that the proposed learning-based trajectory planning algorithm has performance similar to a benchmark method that assumes perfect knowledge of the field hyper-parameters

    Cis-regulatory functions of overlapping HIF-1alpha/E-box/AP-1-like sequences of CD164

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD164 (also known as MGC-24v or endolyn) is a sialomucin which has been suggested to participate in regulating the proliferation, cell adhesion and differentiation of hematopoietic stem and progenitor cells. CD164 is also involved in the development of cancer. The functions of cis-regulatory elements of CD164 remain relatively unknown.</p> <p>Methods</p> <p>In this study, we investigated the function of cis-regulatory elements within the promoter of CD164. We fused the 5'-flanking region of CD164 to a luciferase reporter vector. The minimal promoter region was confirmed by luciferase reporter assay. Using <it>in silico </it>analysis, we found the presence of one HIF-1alpha (HIF-1A) motif (5_-RCGTG-3_) overlapping E-box (CACGTG) and two AP-1-like binding sites (CGCTGTCCC, GTCTGTTG), one of which is also overlapped with HIF-1alpha sequence. Dual-luciferase assay was performed to examine the transcriptional activity of AP-1 and HIF-1alpha of CD164 promoter. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to measure CD164 expression. Chromatin Immunoprecipitation was used to confirm the binding of HIF-1alpha and CD164.</p> <p>Results</p> <p>Co-transfection of c-jun, HIF-1alpha and minimal promoter region construct demonstrated that c-jun and HIF-1alpha bound the CD164 promoter and promoted CD164 expression. Hypoxia treatment also led to the up-regulation of CD164 expression. The mutation of overlapping sequences resulted in the reduced expression of CD164 induced by HIF-1alpha. Chromatin Immunoprecipitation demonstrated that the HIF-1alpha bound the minimal promoter region.</p> <p>Conclusions</p> <p>Determination of the optimal promoter region and transcription factors governing CD164 expression is useful in understanding CD164 functions. These results suggest that cis-regulatory elements of CD164 overlapping HIF-1alpha/E-box/AP-1-like sequences may play important regulatory roles.</p
    • …
    corecore